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Abstract

We consider the cost of hedging contingent claims in a financial market where the
trades of two large investors can move market prices. We provide a characterization
of the minimal hedging costs in terms of associated stochastic control problems. We
also prove that the minimal hedging cost is a viscosity solution of a corresponding
dynamic programming equation in the case of a Markov market model.
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1 Introduction

Our concern is to examine the cost of hedging contingent claims in a financial market
where the trades of two large investors can move market prices, and the purpose of this
paper is to provide a characterization of the minimal hedging costs in terms of associated
stochastic control problems.

1.1 General large investor problem

Let T > 0 be a finite time horizon and {W (t), 0 ≤ t ≤ T} a standard d-dimensional
Brownian motion on a complete probability space (Ω,F , P), endowed with a filtration
F = {Ft, 0 ≤ t ≤ T} which is the P-augmentation of the filtration generated by the
Brownian motion W . Let P denote the set of all Rn-valued, F-progressively measurable
processes p(·) such that

∫ T

0
|p(t)|2 dt < ∞ a.s. Here n ≤ d.
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1.1.a Price dynamics in presence of large investors

We assume that there are two large investors Ik (k = 0, 1) in a financial market where one
bank account and n stocks are traded continuously up to the time T . For each k = 0, 1,
let Π k ⊂ P be a set of admissible trading strategies of the investor Ik, and we write
π = (π0, π1) ∈ Π := Π 0 × Π 1. We assume 0 ∈ Π 0 ∩ Π 1.

Consider a model for price fluctuations as follows: If the investor Ik starts at time 0
with an initial capital xk ∈ R and holds πk

j (t) shares of the j-th stock at time t ∈ [0, T ],

j = 1, . . . , n, k = 0, 1, then the price processes Bπ(·) of the bank account and Ŝπ(·) of the
stocks evolve according to the stochastic differential equation (SDE, for short)

dB(t) = B(t)rπ(t)dt, B(0) = 1,

dŜ(t) = diag[Ŝ(t)]
{
bπ(t)dt + σπ(t)>dW (t)

}
, Ŝ(0) = s ∈ (0,∞)n,

and the discounted wealth process Xxk,π
k (·) of the investor Ik is given as

Xk(t) = xk +

∫ t

0

πk(u)>dSπ(u), t ∈ [0, T ], k = 0, 1, (1.1)

where > denotes the transpose operation; diag[s] is the n × n-diagonal matrix with

diagonal elements s1, . . . , sn; Sπ(·) := Bπ(·)−1Ŝπ(·) is the discounted price process of
stocks; {rπ(t), 0 ≤ t ≤ T}, {bπ(t) = (bπ

1 (t), . . . , bπ
n(t))>, 0 ≤ t ≤ T} and {σπ(t) =

(σπ
1 (t) · · · σπ

n(t)), 0 ≤ t ≤ T} are bounded F-progressively measurable processes taking
values in R+, Rn and Rd ⊗ Rn, respectively. Here the superscript π means that the
process hπ(t, ω) (h = r, b, σ, for instance) with the superscript π depends on the path
{π(u, ω), 0 ≤ u ≤ t} for a.e. (t, ω) ∈ [0, T ] × Ω and π ∈ Π . Therefore the price dynam-
ics are influenced by the actions of the investors. It is for this reason that Ik is called
the large investor. We also remark that the integral in (1.1) is well-defined by means of∫ T

0

∣∣πk(t)
∣∣2 dt < ∞ a.s. and of the boundedness of the coefficients of market.

1.1.b Contingent claim and minimal hedging costs

A contingent claim {BπCπ, T π} consists of an F-adapted, non-negative process {Cπ(t),
0 ≤ t ≤ T} and some class T π of F-stopping times. We assume T ∈ T π. Let us consider
now the following situation: At time t = 0, I0 and I1 enter into an agreement. The seller
I0 agrees to provide the buyer I1 with the random payment Bπ(τ(ω), ω)Cπ(τ(ω), ω) at
time t = τ(ω), where τ is an element of T π and at the disposal of the buyer.

The objective of I0 is to find a portfolio strategy π0 ∈ Π 0 which is chosen according
to a trading strategy π1 ∈ Π 1 of I1 and enables him to fulfill his obligation whenever I1

decides to ask for the payment. Hence the upper hedging cost hup is defined as

hup := inf

{
x0 ≥ 0

∣∣∣∣ ∀π1 ∈ Π 1, ∃π0 ∈ Π 0 s.t.
Xx0,π

0 (τ) ≥ Cπ(τ) a.s., ∀τ ∈ T π.

}
. (1.2)

On the other hand, the objective of I1 is to find both a portfolio strategy π1 ∈ Π 1

and exercise time τ ∈ T π, which are chosen according to a trading strategy π0 ∈ Π 0 of
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I0, such that the payment he receives at t = τ(ω) allows him to cover the debt −x1 be
incurred at t = 0 by purchasing the contingent claim. Therefore the lower hedging cost
hlow is defined as

hlow := sup

{
x1 ≥ 0

∣∣∣∣ ∀π0 ∈ Π 0, ∃π1 ∈ Π 1, ∃τ ∈ T π s.t.
X−x1,π

1 (τ) + Cπ(τ) ≥ 0 a.s.

}
. (1.3)

1.2 Existent studies dealing with analogous models

In a standard market of a small investor model (the coefficients r, b and σ do not depend
on π), there exists an F-progressively measurable process θ : [0, T ] × Ω → Rd such that

b(t, ω) − r(t, ω)1n = −σ(t, ω)>θ(t, ω) a.e. (t, ω) ∈ [0, T ] × Ω (1.4)

and the stochastic exponential process

Zθ(t) := exp

{∫ t

0

θ(u)>dW (u) − 1

2

∫ t

0

|θ(u)|2du

}
, 0 ≤ t ≤ T (1.5)

is a martingale, where 1n = (1, . . . , 1)> ∈ Rn. Further, if the standard market is complete,
by the martingale representation theorem and the Bayes’ rule, we then have

E
[

Zθ(T )

Zθ(t)
C(T )

∣∣∣∣Ft

]
= E [Zθ(T )C(T )] +

∫ t

0

π0(u)>dS(u), t ∈ [0, T ] (1.6)

for some hedging portfolio π0. Therefore the minimal hedging cost1 of European contin-
gent claim {B(T )C(T ), {T}} is given by hup = hlow = E[Zθ(T )C(T )].

In some special cases, we can also use the martingale duality approach to study the
replication of European contingent claims by the large investor. Cuoco & Liu[6] has
provided the dual formulation for the case that rπ, σπ and Cπ are independent of the
trading strategy π, and bπ satisfies

q0(t, ω)>bπ(t, ω) = q0(t, ω)>µ(t, ω) + h(t, q0(t, ω), ω) a.e. (t, ω) ∈ [0, T ] × Ω,

where q0(t) = X0(t)
−1diag[S(t)]π0(t), µ is a bounded F-progressively measurable process

taking values in Rn, and a function h(t, q, ω) on [0, T ] × Rn × Ω satisfies: h(·, q, ·) is an
optional process for each q ∈ Rn; h(t, ·, ω) is Lipschitz uniformly in (t, ω) ∈ [0, T ] × Ω;
h(t, ·, ω) is concave and upper semicontinuous for all (t, ω) ∈ [0, T ] × Ω; h(t, 0, ω) = 0 for
all (t, ω) ∈ [0, T ]×Ω. Bank & Baum[2] dealt with a general semimartingale market model
with a single large investor. They presented a characterization of the upper hedging cost
for European contingent claims in terms of an associated stochastic control problem under
the condition that (1.4) was satisfied for some process θ which did not depend on the large
investor’s position π0 despite of the dependence of r, b and σ upon π0.

In the case of the general large investor model, however, it is difficult to use the

1For a standard asset pricing theory, see the usual textbooks, e.g. Duffie[11], Karatzas[15] and Karatzas
& Shreve[17].
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martingale duality approach in order to show the existence of a portfolio π0 satisfying
(1.6) because of the dependence of θ, C and S upon π. Hence the martingale duality
approach has not been successful to solve the general large investor problem. Therefore
the previous studies have provided several treatments of this problem which avoid the
passage from the dual formulation. These studies dealt with Markov market models with
a single large investor as follows:

( i ) Cvitanić & Ma[9]: For h = b, σ,

hπ(t) = h(t, S(t), π0(t), X0(t)), rπ(t) = r(t, diag[S(t)]π0(t), X0(t)).

(ii) Soner & Touzi[24]: For h = b, σ and q0(t) = X0(t)
−1diag[S(t)]π0(t),

hπ(t) = h(t, S(t), q0(t)), rπ(t) ≡ 1.

(iii) Frey[12]: In one-dimensional case (n = d = 1),

Sπ(t) = ψ(t, Zη(t), π
0(t)), rπ(t) ≡ 1, π0(t) = φ(t, Zη(t)),

where ψ is a smooth reaction function, the stochastic exponential Zη defined as (1.5)
with a constant η is a fundamental state variable process, and the trading strategy
φ is selected from among smooth functions. In Platen & Schweizer[20] and Frey &
Stremme[13] the state variable Zη and the reaction function ψ have been obtained
from equilibrium considerations.

Cvitanić & Ma [9] characterized the cost and portfolio of hedging European option
B(T )C(T ) = g(S(T )) as a solution of a forward-backward SDE corresponding to their
Markov model, and proved the existence and uniqueness of the solution of this equation
under regularity conditions on r, b, σ and g. Frey[12] characterized the hedging portfolio φ
of European option C(T ) = g(S(T )) as a solution of an associated quasi-linear partial dif-
ferential equation and provided results on existence and uniqueness of the solution to this
equation under regularity conditions on ψ and g. Soner & Touzi[24] used a new dynamic
programming principle established in Soner & Touzi[22] to characterize the minimal hedg-
ing cost for European option C(T ) = g(S(T )) as a viscosity solution of a corresponding
dynamic programming equation under suitable conditions on b, σ and g.

Since r, b and σ in our model do not depend on the value of the large investor’s wealth
X0, our model does not include those of Cvitanić & Ma[9] and Soner & Touzi[24]. As
seen in Appendix B, however, we can apply our approach to the study of the replication
in the model of Soner & Touzi[24], and we can treat Example 5.1 of Cvitanić & Ma[9] in
our framework (see Remark B.2 below). Extending the set of admissible portfolios in the
model of Frey[12] to the set of controlled semimartingales

dπ0(t) = α(t)dt + β(t)dW (t) (where α and β are controls),

we also have the application of our approach to the study of the replication in the model
of Frey[12].
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The remainder of this paper is organized in the following way: In the next section we
characterize the minimal hedging costs in terms of associated stochastic control problems.
In §3, we derive a corresponding dynamic programming equation from the representation
obtained in §2, and characterize the minimal hedging cost as a viscosity solution of this
equation in the case of a Markov market model. The proofs of assertions stated in §2 and
§3 are given in §4 and §5, respectively. In Appendix A, we mention briefly the points of
an absence of arbitrage opportunity in our market model.

2 Main result

In order to characterize the hedging costs in terms of the stochastic control problems, we
shall introduce the notion of the change of measure. Let Dm be the class of all Rd-valued,

F-progressively measurable processes ν(·) such that |ν(t, ω)| ≤ m a.e., and D :=
∞
∪

m=1
Dm.

Then the stochastic exponential process

Zν(t) := exp

{∫ t

0

ν(u)>dW (u) − 1

2

∫ t

0

|ν(u)|2du

}
, 0 ≤ t ≤ T

is a martingale for each ν ∈ D, and

Pν(Λ) := E [Zν(T )1lΛ] , Λ ∈ FT

is a probability measure, where 1l is the indicator function. For the change of measure,we
note the Bayes’ rule2: For every FT -measurable random variable Y ≥ 0 a.s.,

Eν [Y |Ft] = E
[

Zν(T )

Zν(t)
Y

∣∣∣∣Ft

]
, ν ∈ D,

where Eν denotes the expectation operator under Pν .
When the seller I0 receives the amount x > hup from the buyer I1, he can cover his

obligation at any time τ ∈ T π without risk, i.e.

sup
π1∈Π 1

inf
π0∈Π 0

sup
τ∈T π

sup
ν∈D

Eν

[
(Cπ(τ) − Xx,π

0 (τ))+]
= 0,

where a+ := a ∨ 0 = max{a, 0}. Formally, we calculate

0 = sup
π1∈Π 1

inf
π0∈Π 0

sup
τ∈T π

sup
ν∈D

Eν

[
(Cπ(τ) − Xx,π

0 (τ))+]
“

?
=” sup

π1∈Π 1

inf
π0∈Π 0

sup
τ∈T π

sup
ν∈D

Eν [Cπ(τ) − Xx,π
0 (τ)]

= sup
π1∈Π 1

inf
π0∈Π 0

sup
τ∈T π

sup
ν∈D

Eν

[
Cπ(τ) − X0,π

0 (τ)
]
− x

“
?
=” sup

π1∈Π 1

inf
π0∈Π 0

sup
τ∈T π

sup
ν∈D

Eν

[(
Cπ(τ) − X0,π

0 (τ)
)+

]
− x,

2See Lemma 3.5.3 in Karatzas & Shreve[16] and Exercise 0.3.6 in Karatzas[15].
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and letting x ↓ hup, we conjecture

hup = sup
π1∈Π 1

inf
π0∈Π 0

sup
τ∈T π

sup
ν∈D

Eν

[(
Cπ(τ) − X0,π

0 (τ)
)+

]
. (2.1)

Indeed, we have our main result as follows:

Theorem 2.1 The upper hedging cost hup is expressed as (2.1) and the lower hedging cost
hlow is given as

hlow = lim
m→∞

inf
π0∈Π 0

sup
π1∈Π 1

sup
τ∈T π

inf
ν∈D

Eν

[(
Cπ(τ) + X0,π

1 (τ)
)
∧ m

]
, (2.2)

where a ∧ b := min{a, b}. Moreover,

( i ) If E[|X0,π
0 (τ)|p] < ∞ for any π ∈ Π , τ ∈ T π and some constant p = p(π, τ) > 1,

then

hup =

(
sup

π1∈Π 1

inf
π0∈Π 0

sup
τ∈T π

sup
ν∈D

Eν

[
Cπ(τ) − X0,π

0 (τ)
])+

. (2.3)

(ii) If E[Cπ(τ)p + |X0,π
1 (τ)|p] < ∞ for any π ∈ Π , τ ∈ T π and some constant p =

p(π, τ) > 1, then

hlow = inf
π0∈Π 0

sup
π1∈Π 1

sup
τ∈T π

inf
ν∈D

Eν

[
Cπ(τ) + X0,π

1 (τ)
]
. (2.4)

Proof The proof is given in §4. ¤

Remark 2.2 When we defer to the suggestion of Bank & Baum[2] and Çetin et al.[4],
the discounted wealth process Xπ

k should be replaced by

X̃π
k (t) = Xπ

k (t) − Lπ(t)

Bπ(t)
, 0 ≤ t ≤ T,

where {Lπ(t), 0 ≤ t ≤ T} is a right-continuous, F-adapted increasing process with
Lπ(0) = 0. Here Lπ(t) has the interpretation of the cumulative cost of the liquidity
risk up to time t ∈ [0, T ]. As seen in the proof stage, however, it is clear that if we replace

Xπ
k with X̃π

k in the equations (2.1)-(2.4), the assertions in the previous theorem remain
to be true without additional assumptions on Lπ.

In order to obtain further sharp results, we are now in a position to make some
assumptions:

Assumption 2.3 ( i ) For all π ∈ Π there exists θπ ∈ D such that

bπ(t, ω) − rπ(t, ω)1n = −σπ(t, ω)>θπ(t, ω) a.e. (t, ω) ∈ [0, T ] × Ω, (2.5)

where 1n = (1, . . . , 1)> ∈ Rn.
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(ii) For all π ∈ Π there exists a constant p > 1 such that

E
[∫ T

0

|π(t)|2p dt

]
< ∞. (2.6)

In the case of a small investor model, the process −θ of (2.5) is called the market price of
risk process and the risk-neutral equivalent martingale measure Pθ plays an important role
for the pricing theory, as stated in §1.2. Moreover the conditions (2.5)-(2.6) guarantees
that there is no arbitrage opportunity in a standard market of the small investor model.
Therefore it seems natural to assume (2.5)-(2.6).

Corollary 2.4 Under Assumption 2.3, we have

hup = sup
π1∈Π 1

inf
π0∈Π 0

sup
τ∈T π

sup
ν∈D

Eν

[
Cπ(τ) − X0,π

0 (τ)
]
. (2.7)

Moreover, if E[Cπ(τ)p] < ∞ for any π ∈ Π , τ ∈ T π and some constant p = p(π, τ) > 1,
then we have the expression (2.4) of the lower hedging cost.

Proof We may assume p < 2 in (2.6). Let π ∈ Π be arbitrary. Since the process θπ ∈ D
is bounded a.e., we have (2.3)-(2.4) if we can prove

Eθπ

[
sup

0≤t≤T

∣∣X0,π
k (t)

∣∣p] < ∞, k = 0, 1. (2.8)

Furthermore the above estimate guarantees that {X0,π
k (t), 0 ≤ t ≤ T} is a martingale

under Pθπ for all π ∈ Π and k = 0, 1. Thus (2.7) is deduced from (2.3). Hence it is
enough to prove (2.8). Indeed, the Burkholder-Davis-Gundy inequalities and the Hölder
inequality yield

Eθπ

[
sup

0≤t≤T

∣∣X0,π
k (t)

∣∣p] ≤ cp Eθπ

[(∫ T

0

∣∣σπ(t)diag[Sπ(t)]πk(t)
∣∣2 dt

)p
2

]
≤ cp‖σπ‖p Eθπ

[(∫ T

0

∣∣πk(t)
∣∣2 |Sπ(t)|2 dt

)p
2

]

≤ cp‖σπ‖p Eθπ

[(∫ T

0

∣∣πk(t)
∣∣2p

dt
)p

2

]1
p

· Eθπ

[(∫ T

0

|Sπ(t)|2q dt
)p

2

]1
q

≤ cp‖σπ‖p E [Zθπ(T )q1 ]
1

pq1 · E
[∫ T

0

∣∣πk(t)
∣∣2p

dt

]1
2

· Eθπ

[∫ T

0

|Sπ(t)|2q dt

]p
2q

for q = p/(p−1), q1 = 2/(2−p) and some constant cp > 0, where ‖σπ‖ := sup{|σπ
i (t, ω)| :

(t, ω) ∈ [0, T ] × Ω, 1 ≤ i ≤ n}. By the standard arguments, we also have

Eθπ

[∫ T

0

|Sπ(t)|2q dt

]
≤ |s|2qTeq(2q−1)‖σπ‖2T .

Therefore we obtain (2.8). ¤
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Corollary 2.5 Suppose that Assumption 2.3 holds. If Bπ, Sπ, Cπ and T π are independent
of π1 for all π = (π0, π1) ∈ Π , then hlow ≤ hup.

Proof As seen above, the process {X0,π
k (t), 0 ≤ t ≤ T} is a Pθπ -martingale for all π ∈ Π

and k = 0, 1, under Assumption 2.3. Hence it follows from (2.1)-(2.2) that

hlow ≤ inf
π0∈Π 0

sup
τ∈T π

Eθπ [Cπ(τ)] ≤ hup. ¤

3 Dynamic programming equations

3.1 Markov market model

In order to adapt the arguments developed by Soner & Touzi[22]-[24] and Bensoussan et
al.[3] to our large investors model, we now focus on the Markov case:

hπ(t) = h(t, B(t), S(t), π(t)), for h = r, b, σ,

where r, b and σ are R+,Rn and Rd ⊗ Rn-valued, bounded functions defined on [0, T ] ×
R+ ×Rn

+ ×R2n. We further assume that r, b and σ are Lipschitz functions in the (β, s, π)
variable, uniformly in t. We consider the special case of European contingent claim:

Cπ(T ) = g(B(T ), S(T )) and T π = {T},

where a non-negative function g on (0,∞)×Rn
+ satisfies the polynomial growth condition:

g(β, s) ≤ c0(β
−l + βl + |s|l), (β, s) ∈ (0,∞) × Rn

+

for certain constants c0, l > 0.
Let Kj ⊂ Rn (j = 0, 1) be compact convex subsets which contain the origin. We

assume that Π j is the set of all processes π ∈ P such that π(t, ω) ∈ Kj a.e. for j = 0, 1.
Let δj denote the support function δj(q) := supp∈Kj

(p>q), q ∈ Rn, j = 0, 1. Define

Hj(p) := inf
{

δj(q) − q>p : |q| = 1
}

, p ∈ Rn, j = 0, 1,

ĥj(β, s) := sup
q∈Rn

+

{
h(β, q) − δj(q − s)

}
, (β, s) ∈ (0,∞) × Rn

+, j = 0, 1,

for each function h : (0,∞) × Rn
+ → R. It is well known that the support function δj is

non-negative, convex and positively homogeneous, and

“ p ∈ Kj ⇔ Hj(p) ≥ 0 ” and “ p ∈ int Kj ⇔ Hj(p) > 0 ” (3.1)

for j = 0, 1. Furthermore we assume that σ satisfies the uniform ellipticity condition:

|σ(y, π)ξ| ≥ c|ξ|, y ∈ [0, T ] × Rn+1
+ , π ∈ K0 × K1, ξ ∈ Rn, (3.2)

for some constant c > 0. This condition guarantees that there exists a bounded function
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θ : [0, T ] × Rn+1
+ × (K0 × K1) → Rd such that

−σ(y, π)>θ(y, π) = b(y, π) − r(y, π)1n, (3.3)

and hence the condition (2.5) holds.

3.2 Stochastic control problems and dynamic programming equations

Thanks to Girsanov’s theorem, we have

Eν+θ

[
X0,π

j (T )
]

= Eν+θ

[∫ T

0

πj(u)>diag[S(u)]σ(Y (u), π(u))>ν(u)du

]
for π ∈ Π , ν ∈ D, j = 0, 1, where Y (u) := (u,B(u), S(u))> and θ(u) = θ(Y (u), π(u)).
From (2.7) and (2.4), therefore, we can derive the stochastic control problems:

U(y) := sup
π1∈Π 1

inf
π0∈Π 0

sup
ν∈D

Ey

[
g(Bπ(T ), Sπ,ν(T )) −

∫ T

t

π0(u)>diag[Sπ,ν(u)]σ(a(u))>ν(u)du

]
,

(3.4)

L̃(y) := inf
π0∈Π 0

sup
π1∈Π 1

inf
ν∈D

Ey

[
g(Bπ(T ), Sπ,ν(T )) +

∫ T

t

π1(u)>diag[Sπ,ν(u)]σ(a(u))>ν(u)du

]
,

(3.5)

for y = (t, β, s) ∈ [0, T ]× (0,∞)× (0,∞)n, where a(u) = (Y π,ν(u), π(u))>, Sπ,ν is a unique
solution of the equation

dS(u) = diag[S(u)]σ(a(u))>
{
ν(u)du + dW (u)

}
, t ≤ u ≤ T, (3.6)

and the suffix y = (t, β, s) of E means that we have specified the data (Bπ(t), Sπ,ν(t)) =
(β, s).

Then, since {σi(y, π)}i is linearly independent by means of (3.2), the dynamic pro-
gramming equation (DPE, for short) for (3.4) is given as follows:

0 = Ut(y) + sup
π1∈K1

inf
π0∈K0

sup
ν∈Rd

{
r(y, π)βUβ(y) + (DU(y) − π0)>diag[s]σ(y, π)>ν

+
1

2
Tr

[{
diag[s]σ>σ(y, π)diag[s]

}
D2U(y)

]}

=

 sup
π1∈K1

GDU(y),π1

U(y) , if DU(y) ∈ K0,

+∞ , if DU(y) /∈ K0,
(3.7)

for y = (t, β, s) ∈ [0, T ) × (0,∞)n+1, where Dϕ and D2ϕ are the first and second order
differentials of ϕ with respect to the variable s and

Gπϕ(y) = ϕt(y) + r(y, π)βϕβ(y) +
1

2
Tr

[{
diag[s]σ>σ(y, π)diag[s]

}
D2ϕ(y)

]
.
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Combining (3.7) with (3.1), we have the DPE

min
{
− sup

π1∈K1

GDU(y),π1

U(y), H0(DU(y))
}

= 0, y ∈ [0, T ) × (0,∞)n+1. (3.8)

Similarly, the DPE derived from (3.5) is characterized as

min
{
− sup

π0∈K0

Gπ0,DL(y)L(y), H1(DL(y))
}

= 0, y ∈ [0, T ) × (0,∞)n+1,

where L(y) := −L̃(y).

We are now in the position to provide some conditions on the payoff function g and
convex set K0.

Assumption 3.1

( i ) There are constants c0, l > 0 and γ0 ∈ K0 such that

g(β, s) ≤ c0(β
l + β−l) + γ>

0 s, (β, s) ∈ (0,∞) × Rn
+. (3.9)

(ii) Either one of the following conditions holds:

• g is continuous, or • ĝ0 is continuous and ĝ0 = (̂g∗)0 , (3.10)

where

g∗(z) := lim inf
ε↓0

{
g(z′) : z′ ∈ (0,∞) × Rn

+ and |z − z′| ≤ ε
}
, z ∈ Rn+1

+ .

(iii) For any q, q′ ∈ Rn satisfying q′ − q ∈ Rn
+ and |qk| = |q′k|, k = 1, . . . , n, we have

δ0(q) ≥ δ0(q
′). (3.11)

Example 3.2 Let us consider the following two examples.

( i ) K0 is the closed ball Bρ(0) centered at 0 with radius ρ > 0. Then δ0(q) = ρ|q|
satisfies (3.11).

(ii) (Rectangular constraints) K0 = J1 × · · · × Jn with Jk = [−ηk, ξk], 0 ≤ ξk ≤ ηk < ∞.
Then δ0(q) =

∑n
k=1(ξkq

+
k + ηkq

−
k ) satisfies (3.11).

The following theorem characterizes the value function U as a viscosity solution of
the DPE (3.8). For the notion and general theory of viscosity solutions, we recommend
readers to refer to the User’s Guide by Crandall et al.[5].

Theorem 3.3 Let (3.2) and (3.9) hold. Then U satisfies the following expressions:

( i ) (Growth condition) For all (t, β, s) ∈ [0, T ] × (0,∞) × (0,∞)n,

0 ≤ U(t, β, s) ≤ c0(β
l + β−l)el‖r‖∞T + γ>

0 s. (3.12)
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(ii) (Supersolution) For any smooth test function ϕ and local minimizer y = (t, β, s) ∈
[0, T ) × Rn+1

+ of (U∗ − ϕ) on [0, T ] × Rn+1
+ , we have

min
{
− sup

π1∈K1

GDϕ(y),π1

ϕ(y), sup
p∈Rn

H0(D
s,pϕ(y))

}
≥ 0. (3.13)

(iii) (Subsolution) For any smooth test function ϕ and local maximizer y = (t, β, s) ∈
[0, T ) × Rn+1

+ of (U∗ − ϕ) on [0, T ] × Rn+1
+ , we have

min
{
− sup

π1∈K1

GDϕ(y),π1

ϕ(y), H̃0(Dϕ(y) : s)
}
≤ 0. (3.14)

(iv) (Terminal condition) U∗(T, z) ≥ (̂g∗)0(z), z ∈ (0,∞)n+1.
Moreover if γ0 in (3.9) is an element of int(K0∩Rn

+) and (3.10)-(3.11) are satisfied,
then U∗(T, z) = U∗(T, z) = ĝ0(z), z ∈ (0,∞)n+1.

Here the upper (resp. lower) semicontinuous envelope U∗ (resp. U∗ := −(−U)∗) of U is
defined as

U∗(y) := lim sup
ε↓0

{
U(y′) : |y − y′| ≤ ε, y′ ∈ [0, T ) × (0,∞)n+1

}
, y ∈ [0, T ] × Rn+1

+ ,

Ds,pϕ := (Ds,p
1 ϕ, . . . , Ds,p

n ϕ)> with Ds,p
j ϕ := Dsj

ϕ1l{sj>0} + pj1l{sj=0},

and H̃0(p : s) := H0(p)1l{s∈(0,∞)n} + ∞1l{s∈∂Rn
+}.

Proof Here we prove only (3.12). The other claims are proved in §5.
It is clear that U(t, β, s) ≥ 0. Let π0(·) ≡ γ0 and y = (t, β, s) ∈ [0, T ) × (0,∞)n+1 be

arbitrary. For any π1 ∈ Π 1 and ν ∈ D, we then have

Ey

[
g(Bπ,ν(T ), Sπ,ν(T )) −

∫ T

t

π0(u)>diag[Sπ,ν(u)]σ(a(u))>ν(u)du

]
≤ c0Ey

[
Bπ,ν(T )l + Bπ,ν(T )−l

]
+ Ey

[
γ>

0 Sπ,ν(T ) −
∫ T

t

γ>
0 diag[Sπ,ν(u)]σ(a(u))>ν(u)du

]
≤ c0(β

l + β−l)el‖r‖∞T + γ>
0 s,

this provides the second inequality in (3.12). ¤

Finally we consider a verification theorem for the DPE (3.8).

Corollary 3.4 (Verification Theorem) Assume (3.2) and g ≤ (̂g∗)0. Let u ∈ C([0, T ] ×
(0,∞)n+1) ∩ C1,1,2([0, T ) × (0,∞) × (0,∞)n) be solution of

sup
π1∈K1

GDu(y),π1

u(y) = 0, y ∈ [0, T ) × (0,∞)n+1,

Du(y) ∈ K0, y ∈ [0, T ) × (0,∞)n+1,

u(T, z) = (̂g∗)0(z), z ∈ (0,∞)n+1,

11



u(t, z) ≤ c0

(
1 + |z|l +

n∏
j=0

z−l
j

)
, z ∈ (0,∞)n+1,

where c0, l > 0 are constants. Then u = U on [0, T ) × (0,∞)n+1.

Proof 1. First, we show u ≥ U . Fix arbitrary y = (t, z) ∈ [0, T ) × (0,∞)n+1. Let
π1 ∈ Π 1 and ν ∈ D be arbitrary, and define π0(v) := Du(Y π,ν

y (v)), v ∈ [t, T ). We notice
that the SDE (3.6) has a unique solution since r, b and σ are Lipschitz functions in the
(z, π) variable, uniformly in t. Applying Itô’s lemma to u, we see that

Ey

[
(̂g∗)0(B

π,ν(T ), Sπ,ν(T )) −
∫ T

t

π0(v)>diag[Sπ,ν(v)]σ(a(v))>ν(v)dv

]
= u(y) + Ey

[∫ T

t

Gπu(Y π,ν(v))dv

]
≤ u(y).

Hence we have u(y) ≥ U(y). (This inequality guarantees that U is locally bounded and
satisfies (3.13) without the condition (3.9).)
2. To prove the reverse inequality, we suppose that 2ζ := u(t∗, z∗) − U∗(t∗, z∗) > 0 for
some (t∗, z∗) ∈ [0, T ) × (0,∞)n+1, and let us work towards a contradiction. Define

v(t, z) :=
U∗(t, z)

ξ(z)
=

U∗(t, z)

1 + |z|l+1 +
∏n

j=0 z
−(l+1)
j

,

ϕ(t, z) :=
u(t, z)

ξ(z)
− ζ

ξ(z)

t − T

t∗ − T
,

and ψ := v − ϕ. Since

ψ(t∗, z∗) = − ζ

ξ(z∗)
< 0, ψ(T, z) = lim

|z|→∞
ψ(t, z) = lim

z→ez∈∂Rn+1
+

ψ(t, z) = 0,

ψ achieves its minimum at some (t, z) ∈ [0, T ) × (0,∞)n+1. Hence (3.13) implies that
− supπ1∈K1

Lπ1
ϕ(t, z) ≥ 0, where

Lπ1

ϕ(t, z) := ξ(z)GD(ξϕ)(t,z),π1

ϕ(t, z) + ϕ(t, z)GD(ξϕ)(t,z),π1

ξ(z)

+
1

2
Tr

[
Σ (t, z,D(ξϕ)(t, z), π1)

{
Dϕ(t, z)Dξ(z)> + Dξ(z)Dϕ(t, z)>

}]
and Σ (t, β, s, π) := diag[s]σ>σ(t, β, s, π)diag[s]. However, this contradicts with

− sup
π1∈K1

Lπ1

ϕ(t, z) = − sup
π1∈K1

GDu(t,z),π1

u(t, z) − ζ

T − t∗
= − ζ

T − t∗
< 0.

¤

Needless to say, it is easy to deduce the analogous results on the lower hedging cost
−L. Hence we avoid going into details here.
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4 Proof of Theorem 2.1

To prove Theorem 2.1, we need the following lemma:

Lemma 4.1 (Cvitanić et al.[8]) Let K ⊂ Rd be a compact, convex set which con-
tains the origin, and δ the support function δ(z) := supy∈K(y>z), z ∈ Rd. For an
FT -measurable random variable η, we define the process Y as

Y (t) := ess sup
ν∈D

Eν

[
η −

∫ T

t

δ(ν(u))du

∣∣∣∣Ft

]
, 0 ≤ t ≤ T. (4.1)

If Eν [sup0≤t≤T |Y (t)|] < ∞ for every ν ∈ D, then there are a K-valued, F-progressively
measurable process α and a predictable increasing, right-continuous process A with A(0) =
0 such that

Y (t) = η −
∫ T

t

α(u)>dW (u) + A(T ) − A(t) a.s., 0 ≤ t ≤ T. (4.2)

Remark 4.2 Cvitanić et al.[8] used this result to find a minimal solution of a backward
SDE with constraints. Also, Sekine[21] used the analogous result to obtain a characteriza-
tion of the upper hedging cost under delta constraints in terms of an associated stochastic
control problem.

Proof of Theorem 2.1: Denote by ĥup (resp. ĥlow) the right-hand side of (2.1) (resp.

(2.2)). Let ε, ρ, l,m > 0 be arbitrary. Let K be the closed ball Bε(0) = {|z| ≤ ε} ⊂ Rd.

1. We first prove hup ≥ ĥup. If the set of (1.2) is empty, then hup = ∞ ≥ ĥup. Suppose
that the set of (1.2) contains an element x0. Then, for all π1 ∈ Π 1 there exists π0 ∈ Π 0

such that

Zν(τ)x0 ≥ Zν(τ)
(
Cπ(τ) − X0,π

0 (τ)
)+

a.s., τ ∈ T π, ν ∈ D.

Hence we get

x0 ≥ inf
π0∈Π 0

sup
τ∈T π

sup
ν∈D

Eν

[(
Cπ(τ) − X0,π

0 (τ)
)+

]
, π1 ∈ Π 1,

which implies hup ≥ ĥup.

2. Next we show hlow ≤ ĥlow. Since 0 ∈ Π 1, the set of (1.3) contains the origin and thus
hlow ≥ 0. Let x1 be arbitrary element of the set of (1.3). Then, for any π0 ∈ Π 0 there
exist π1 ∈ Π 1 and τ ∈ T π such that

0 ≤ Zν(τ)(x1 ∧ m) ≤ Zν(τ)
{(

Cπ(τ) + X0,π
1 (τ)

)
∧ m

}
a.s., ν ∈ D.

Thus we obtain

x1 ∧ m ≤ sup
π1∈Π 1

sup
τ∈T π

inf
ν∈D

Eν

[(
Cπ(τ) + X0,π

1 (τ)
)
∧ m

]
, π0 ∈ Π 0,

which yields hlow ≤ ĥlow.
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3. Let π ∈ Π , τ ∈ T π be arbitrary. To prove hup ≤ ĥup, define the process Y as (4.1)

with the FT -measurable random variable η :=
(
Cπ(τ) − X0,π

0 (τ)
)+∧m. Since the support

function δ is non-negative, by means of (4.2), we have

η = Y (0) +

∫ T

0

αε(t)
>dW (t) − A(T )

≤ sup
ν∈D

Eν

[(
Cπ(τ) − X0,π

0 (τ)
)+

]
+

∫ T

0

αε(t)
>dW (t) a.s. (4.3)

and E
[(∫ T

0
αε(t)

>dW (t)
)2

]
≤ Tε2. By possibly passing to a subsequence {αε′} and

letting ε′ ↓ 0, m → ∞, we get

Cπ(τ) − X0,π
0 (τ) ≤ sup

ν∈D
Eν

[(
Cπ(τ) − X0,π

0 (τ)
)+

]
a.s. (4.4)

For all π1 ∈ Π 1, we can choose π0
ρ ∈ Π 0 such that

sup
τ∈T πρ

sup
ν∈D

Eν

[(
Cπρ(τ) − X

0,πρ

0 (τ)
)+

]
≤ inf

π0∈Π 0
sup
τ∈T π

sup
ν∈D

Eν

[(
Cπ(τ) − X0,π

0 (τ)
)+

]
+ ρ,

where πρ = (π0
ρ, π

1). Hence we have

Cπρ(τ) − X
0,πρ

0 (τ) ≤ ĥup + ρ a.s., τ ∈ T πρ ,

which means hup ≤ ĥup + ρ, and thus we obtain hup ≤ ĥup by ρ ↓ 0.

4. To show hlow ≥ ĥlow, let π ∈ Π , τ ∈ T π be arbitrary. Define the process Y as (4.1)
with −η :=

(
Cπ(τ) + X0,π

1 (τ)
)
∧m∨ (−l). Then, by the similar arguments to (4.3)-(4.4),

we get

Cπ(τ) + X0,π
1 (τ) = lim

l→∞

(
Cπ(τ) + X0,π

1 (τ)
)
∨ (−l)

≥ inf
ν∈D

Eν

[(
Cπ(τ) + X0,π

1 (τ)
)
∧ m

]
a.s. (4.5)

Fix arbitrary π0 ∈ Π 0. Then, for certain π̂1
ρ ∈ Π 1 and τ̂ρ ∈ T bπρ we have

inf
ν∈D

Eν

[(
Cbπρ(τ̂ρ) + X

0,bπρ

1 (τ̂ρ)
)
∧ m

]
+ ρ ≥ sup

π1∈Π 1

sup
τ∈T π

inf
ν∈D

Eν

[(
Cπ(τ) + X0,π

1 (τ)
)
∧ m

]
,

where π̂ρ = (π0, π̂1
ρ). Therefore we get

Cbπρ(τ̂ρ) + X
0,bπρ

1 (τ̂ρ) + ρ ≥ inf
π0∈Π 0

sup
π1∈Π 1

sup
τ∈T π

inf
ν∈D

Eν

[(
Cπ(τ) + X0,π

1 (τ)
)
∧ m

]
a.s.

Denote by hm the right-hand side of the above inequality, and set

π̃ρ :=
(
π0, π̂1

ρ1l{hm≥ρ}
)
∈ Π , τ̃ρ := τ̂ρ1l{hm≥ρ} + T1l{hm<ρ} ∈ T eπρ .
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Then we obtain

Ceπρ(τ̃ρ) + X
0,eπρ

1 (τ̃ρ) ≥ (hm − ρ)+ a.s.

which implies that hm − ρ ≤ hlow. Letting ρ ↓ 0 and m → ∞, we have ĥlow ≤ hlow.
5. Next we prove (2.3). (2.1) says that hup is not less than the right-hand side of (2.3).
To prove the reverse inequality, let π ∈ Π , τ ∈ T π and assume E[|X0,π

0 (τ)|p] < ∞ for
some p > 1. Define the process Y as (4.1) with η := (Cπ(τ) − X0,π

0 (τ)) ∧ m. Since

−E
[
|X0,π

0 (τ)|
∣∣Ft

]
≤ E[η|Ft] ≤ Y (t) ≤ m a.s.,

the Hölder inequality and Doob’s maximal inequality show

Eν

[
sup

0≤t≤T
|Y (t)|

]
≤ m + Eν

[
sup

0≤t≤T
E

[
|X0,π

0 (τ)|
∣∣Ft

]]

≤ m + E [Zν(T )q]
1
q E

[
sup

0≤t≤T
E

[
|X0,π

0 (τ)|
∣∣Ft

]p
]1

p

(4.6)

≤ m + q E [Zν(T )q]
1
q E

[
|X0,π

0 (τ)|p
]1

p < ∞

for any ν ∈ D and q = p/(p− 1). By the similar arguments to (4.3)-(4.4), hence, we have

Cπ(τ) − X0,π
0 (τ) ≤ sup

ν∈D
Eν

[
Cπ(τ) − X0,π

0 (τ)
]

a.s.

We also note that for all π1 ∈ Π 1 there exists π0
ρ ∈ Π 0 such that(

sup
τ∈T πρ

sup
ν∈D

Eν

[
Cπρ(τ) − X

0,πρ

0 (τ)
])+

≤
(

inf
π0∈Π 0

sup
τ∈T π

sup
ν∈D

Eν

[
Cπ(τ) − X0,π

0 (τ)
])+

+ ρ,

where πρ = (π0
ρ, π

1). From two inequalities above, we know that hup − ρ is not greater
than the right-hand side of (2.3). Since ρ > 0 is arbitrary, we have (2.3).

6. Finally we show (2.4). Denote by h̃low the right-hand side of (2.4). It is clear hlow ≤ h̃low

by (2.2). Let π ∈ Π , τ ∈ T π, and assume E[Cπ(τ)p + |X0,π
0 (τ)|p] < ∞ for some p > 1.

Define the process Y as (4.1) with −η := (Cπ(τ) + X0,π
1 (τ)) ∨ (−l). Clearly,

−l ≤ −Y (t) ≤ E[−η|Ft] ≤ E
[
Cπ(τ) +

∣∣X0,π
1 (τ)

∣∣∣∣Ft

]
a.s.

Therefore the same calculus as (4.6) gives

Eν

[
sup

0≤t≤T
|Y (t)|

]
≤ l + q E [Zν(T )q]

1
q E

[(
Cπ(τ) + |X0,π

1 (τ)|
)p

]1
p

< ∞

for any ν ∈ D and q = p/(p − 1). Thus, by the similar arguments to (4.5), we have

Cπ(τ) + X0,π
1 (τ) ≥ inf

ν∈D
Eν

[
Cπ(τ) + X0,π

1 (τ)
]

a.s.
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Fix arbitrary π0 ∈ Π 0. Then we can choose π̂1
ρ ∈ Π 1 and τ̂ρ ∈ T bπρ such that(

inf
ν∈D

Eν

[
Cbπρ(τ̂ρ) + X

0,bπρ

1 (τ̂ρ)
])

∧ m + ρ

≥
(

sup
π1∈Π 1

sup
τ∈T π

inf
ν∈D

Eν

[
Cπ(τ) + X0,π

1 (τ)
])

∧ m ≥ h̃low ∧ m,

where π̂ρ = (π0, π̂1
ρ). Therefore we can show h̃low ∧ m − ρ ≤ hlow along the same line as

Step 4. Letting ρ ↓ 0 and m → ∞, we obtain (2.4). Hence the proof is complete. ¤

5 Proof of Theorem 3.3

We shall denote Y π,ν
y (u) := (u,Bπ

t,β(u), Sπ,ν
t,s (u)), u ∈ [t, T ] for each π ∈ Π , ν ∈ D and

y = (t, β, s) ∈ [0, T ] × Rn+1
+ . Throughout this section, we assume (3.2) and (3.9).

5.1 Dynamic programming principle

We first establish the dynamic programming principle (DPP, for short): For every y =
(t, β, s) ∈ [0, T ] × (0,∞)n+1 and F-stopping time τ taking values in [t, T ] a.s.,

U(y) = sup
π1∈Π 1

inf
π0∈Π 0

sup
ν∈D

Ey

[
U(Y π,ν(τ)) −

∫ τ

t

π0(u)>diag[Sπ,ν(u)]σ(Y π,ν(u), π(u))>ν(u)du

]
.

(5.1)

By virtue of the arguments in §2 and §4, we know that this principle is equivalent to the
following lemma:

Lemma 5.1 (Soner & Touzi[22]) For every y = (t, β, s) ∈ [0, T ] × (0,∞)n+1 and
F-stopping time τ satisfying t ≤ τ ≤ T a.s., we have

U(y) = inf

{
x0 ≥ 0

∣∣∣∣ ∀π1 ∈ Π 1, ∃π0 ∈ Π 0 s.t.
X t,x0,π

0,y (τ) ≥ U(Y π,ν
y (τ)) a.s.

}
,

where

X t,x0,π
0,y (u) = x0 +

∫ u

t

π0(q)>dSπ,ν
y (q), t ≤ u ≤ T.

Proof It immediately follows from the arguments in §3 of Soner & Touzi[22]. ¤

5.2 Supersolution property

Lemma 5.2 U∗ satisfies (3.13).
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Proof 1. Let y = (t, z) ∈ [0, T ) × Rn+1
+ and ϕ be an R-valued smooth test function on

[0, T ] × Rn+1
+ , and suppose that

0 = (U∗ − ϕ)(y) = min
[0,T ]×Rn+1

+

(U∗ − ϕ).

Let {ym}m≥1 ⊂ [0, T ) × (0,∞)n+1 be a sequence satisfying

ym = (tm, zm) → y and U(ym) → U∗(y) as m → ∞.

Set

ε2
m := U(ym) − ϕ(ym) + m−1 → 0 as m → ∞.

Fix arbitrary π1(·) ≡ π1 ∈ K1 and ν(·) ≡ ν ∈ Rd. For each π0 ∈ Π 0 and sufficiently large
number m, define

τm := (tm + εm) ∧ inf
{
u ≥ tm :

∣∣Hπ,ν
ym

(u) − Hπ,ν
ym

(tm)
∣∣ ≥ 1

}
< T,

where Hπ,ν
ym

(u) := log Bπ
ym

(u) +
∑n

j=1 log Sπ,ν
ym,j(u).

Since ϕ ≤ U∗ ≤ U on [0, T ) × (0,∞)n+1, it follows from the DPP (5.1) that there is a
π0

m ∈ Π 0 such that

ε2
m ≥ −ϕ(ym) +

1

m
+ inf

π0∈Π 0
Eym

[
U(Y π,ν(τm)) −

∫ τm

tm

π0(u)>diag[Sπ,ν(u)]σ(a(u))>νdu

]
≥ −ϕ(ym) + Eym

[
U(Y π0

m,π1,ν(τm)) −
∫ τm

tm

π0
m(u)>diag[Sπ0

m,π1,ν(u)]σ(am(u))>νdu

]
≥ −ϕ(ym) + Eym

[
ϕ(Y π0

m,π1,ν(τm)) −
∫ τm

tm

π0
m(u)>diag[Sπ0

m,π1,ν(u)]σ(am(u))>νdu

]
= Eym

[∫ τm

tm

{(
Dϕ(Y π0

m,π1,ν(u)) − π0
m(u)

)>
diag[Sπ0

m,π1,ν(u)]σ(am(u))>ν

+ Gπ0
m(u),π1

ϕ(Y π0
m,π1,ν(u))

}
du

]
=: Eym

[∫ τm

tm

F π1,ν(Y π0
m,π1,ν(u), π0

m(u))du

]
≥ −

∫ tm+εm

tm

Eym

[∣∣∣F π1,ν(Y π0
m,π1,ν(u), π0

m(u)) − F π1,ν(y, π0
m(u))

∣∣∣ 1l{u≤τm}

]
du

+ Eym [τm − tm] inf
π0∈K0

F π1,ν(y, π0)

≥ −C ′εm(|y|ε1/2
m + |y − ym|)

+
(
εmP{τm = tm + εm} + Eym [(τm − tm)1l{τm<tm+εm}]

)
inf

π0∈K0

F π1,ν(y, π0),

where am(u) = (Y π0
m,π1,ν(u), π0

m(u), π1), a constant C ′ > 0 is independent of m, and the
last inequality follows from the standard results about solutions of SDEs with random
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coefficients. Dividing the above inequality by εm, and sending m to infinity using the
estimate

0 ≤ ε−1
m Eym [(τm − tm)1l{τm<tm+εm}] ≤ P{τm < tm + εm}

≤ P
{
sup0≤u<εm

∣∣Hπ,ν
ym

(tm + u) − Hπ,ν
ym

(tm)
∣∣ ≥ 1

}
≤ E

[
sup0≤u<εm

∣∣Hπ,ν
ym

(tm + u) − Hπ,ν
ym

(tm)
∣∣2] ≤ C ′εm,

we have 0 ≥ infπ0∈K0
F π1,ν(y, π0) , and hence

0 ≥ sup
π1∈K1

sup
ν∈Rd

inf
π0∈K0

F π1,ν(y, π0)

=

{
sup

π1∈K1

GDϕ(y),π1

ϕ(y) , if inf
π0∈K0

|(Dϕ(y) − π0)diag[s]| = 0,

+∞ , otherwise.

Therefore we obtain (3.13). (For the sake of simplicity, we assume that y is a global
minimizer of U∗ −ϕ. It easily see that we have (3.13) for any local minimizer y along the
same line.) ¤

5.3 Subsolution property

Let us introduce

M0(ϕ) :=

{
y ∈ [0, T ] × Rn+1

+ : min
{
− sup

π1∈K1

GDϕ(y),π1

ϕ(y), H̃0(Dϕ(y) : s)
}

> 0

}
for each smooth test function ϕ. Then we have the analogous result with Lemma 4.2 of
Soner & Touzi[23].

Lemma 5.3 Let J = (t1, t2) ⊂ [0, T ], Bρ(z0) be the closed ball centered at z0 ∈ Rn+1
+ with

radius ρ > 0, Aρ := Bρ(z0) ∩ Rn+1
+ , and ϕ be a smooth test function. If

J × int A2ρ ⊂ M0(ϕ), (5.2)

then

sup
{
U∗ − ϕ : J0 × Aρ

}
≤ sup

{
U − ϕ : ∂p(J × A2ρ)

}
, (5.3)

where ∂p(J ×A) := (t1, t2]×{∂A∩ (0,∞)n+1}∪ {t2}× int A and J0 := J ∪ ({t1}∩ {0})∪
({t2} ∩ {T}).

Proof Let y ∈ J0 × Aρ and {ym}m ⊂ [t1, t2) × int A2ρ be a sequence satisfying

ym = (t′m, βm, sm) → y and U(ym) → U∗(y) as m → ∞.

Fix arbitrary m ≥ 1. For any π1 ∈ Π 1 and ν ∈ D, we define π0(u) := Dϕ(Y π,ν
ym

(u)), u ∈
[t′m, T ]. Since r, b and σ are Lipschitz functions in the (β, s, π) variable, uniformly in t, we
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notice that the SDE (3.6) has a unique solution and (Bπ,ν
ym

, Sπ,ν
ym

) ∈ (0,∞)n+1 a.e.
Define π∗(u) := π(u ∧ τ), u ∈ [t′m, T ] with

τ := inf
{
u > t′m : (Bπ,ν

ym
(u), Sπ,ν

ym
(u)) /∈ intA2ρ

}
∧ t2.

By means of (5.2), we see π∗(u) ∈ Π . Taking account of (5.1) and (5.2), we have

U(ym) ≤ sup
π1
∗∈Π 1

sup
ν∈D

Eym

[
U(Y π∗,ν(τ)) −

∫ τ

t′m

π0
∗(u)>diag[Sπ∗,ν(u)]σ(Y π∗,ν(u), π∗(u))>ν(u)du

]
≤ sup

{
U − ϕ : ∂p(J × A2ρ)

}
+ sup

π1∈Π 1

sup
ν∈D

Eym

[
ϕ(Y π,ν(τ)) −

∫ τ

t′m

π0(u)>diag[Sπ,ν(u)]σ(Y π,ν(u), π(u))>ν(u)du

]
≤ sup

{
U − ϕ : ∂p(J × A2ρ)

}
+ ϕ(ym) + sup

π1∈Π 1

sup
ν∈D

Eym

[∫ τ

t′m

Gπϕ(Y π,ν(u))du

]
≤ sup

{
U − ϕ : ∂p(J × A2ρ)

}
+ ϕ(ym).

Letting m → ∞, we obtain U∗(y)−ϕ(y) ≤ sup{U −ϕ : ∂p(J ×A2ρ)}, and thus (5.3). ¤

Lemma 5.4 U satisfies (3.14).

Proof Let y = (t0, z0) ∈ [0, T ) × Rn+1
+ and ϕ be an R-valued smooth test function on

[0, T ] × Rn+1
+ , and suppose that

(U∗ − ϕ)(y) = (strict) max
[0,T ]×Rn+1

+

(U∗ − ϕ).

Suppose y ∈ M0(ϕ). Then there is a ρ ∈ (0, T − t0) such that J × intA2ρ ⊂ M0(ϕ),
where J := ((t0 − ρ)+, t0 + ρ) and Aρ is as in Lemma 5.3. In view of Lemma 5.3, we get
the contradiction:

(U∗ − ϕ)(y) ≤ sup
J0×Aρ

(U∗ − ϕ) ≤ sup
∂p(J×A2ρ)

(U − ϕ) < (U∗ − ϕ)(y).

Hence we know y ∈ M0(ϕ)c, that is, (3.14) holds. ¤

5.4 Terminal condition

Lemma 5.5 U∗(T, ·) ≥ (̂g∗)0 on (0,∞)n+1.

Proof 1. Fix arbitrary t0 ∈ [0, T ) and β0 > 0. First we prove that U∗ satisfies

H0(DU∗(t0, β0, s)) ≥ 0, s ∈ (0,∞)n in the viscosity sense.
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To this end, let s0 ∈ (0,∞)n and ϕ be an R-valued smooth test function on Rn
+, and

suppose that

0 = (U∗(t0, β0, ·) − ϕ)(s0) = (strict) min
Rn

+

(U∗(t0, β0, ·) − ϕ). (5.4)

Let B2ρ := B2ρ(β0, s0) ⊂ (0,∞)n+1 be the closed ball centered at (β0, s0) with radius
2ρ > 0. Define

ϕm(t, β, s) := ϕ(s) − m[(t − t0)
2 + (β − β0)

2], Mm := min
[0,T ]×B2ρ

(U∗ − ϕm)

for each m ≥ 1. Since U∗ is lower semicontinuous, Mm = (U∗ − ϕm)(ym) for some
ym = (tm, βm, sm) ∈ [0, T ] × B2ρ. There exist then a (t∗, β∗, s∗) ∈ [0, T ] × B2ρ and a
relabeled subsequence (tm, βm, sm) such that (tm, βm, sm) → (t∗, β∗, s∗) as m → ∞.

Since U∗ is non-negative, we have

m[(tm − t0)
2 + (βm − β0)

2] − ϕ(sm) ≤ Mm ≤ (U∗ − ϕm)(t0, β0, s0) = 0,

and thus (tm, βm) → (t0, β0) as m → ∞. Further

lim sup
m→∞

m[(tm − t0)
2 + (βm − β0)

2] ≤ lim sup
m→∞

{
ϕ(sm) − U∗(ym)

}
≤ ϕ(s∗) − U∗(t0, β0, s∗) ≤ 0.

In view of (5.4), this inequality provides s∗ = s0, limm→∞ U∗(ym) = U∗(t0, β0, s0) and
(tm, βm, sm) ∈ [0, T ) × Bρ for sufficiently large m. Hence, we know from Lemma 5.2 that

0 ≤ lim inf
m→∞

H0(Dϕm(tm, βm, sm)) = lim inf
m→∞

H0(Dϕ(sm)) = H0(Dϕ(s0)).

2. From the definition of U∗, we note

U∗(T, β, s) = lim inf
ε↓0

{
U∗(t0, β0, s0) :

0 < T − t0 ≤ ε,
|β − β0| + |s − s0| ≤ ε, (β0, s0) ∈ Rn+1

+ .

}
for (β, s) ∈ Rn+1

+ . Therefore it follows from the stability property that for each β > 0
U∗(T, β, ·) satisfies

H0(DU∗(T, β, s)) ≥ 0, s ∈ (0,∞)n in the viscosity sense.

3. Fix arbitrary z ∈ Rn+1
+ . Next we show U∗(T, z) ≥ g∗(z). Choose π1 ≡ 0 and ν ≡ 0.

Let {ym}m≥1 ⊂ [0, T ) × (0,∞)n+1 be a sequence satisfying

ym = (tm, βm, sm) → y := (T, z) and U(ym) → U∗(y) as m → ∞.

Then we have

U(ym) +
1

m
≥ inf

π0∈Π 0
Eym

[
g(Bπ0,0,0(T ), Sπ0,0,0(T ))

]
+

1

m
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≥ Eym

[
g(Bπ0

m,0,0(T ), Sπ0
m,0,0(T ))

]
for some π0

m ∈ Π 0. Also it easily see that (B
π0

m,0,0
ym (T ), S

π0
m,0,0

ym (T )) → z a.s. as m → ∞
after possibly passing to a subsequence. Hence Fatou’s lemma gives U∗(T, z) ≥ g∗(z).
4. Thanks to the same argument as in Proposition 4 of Soner & Touzi[24] we obtain

U∗(T, ·) ≥ (̂g∗)0 on (0,∞)n+1. ¤

Lemma 5.6 Let β0 be a positive constant. Assume (3.10). Then, for any smooth test
function ϕ and local maximizer s0 ∈ Rn

+ of (U∗(T, β0, ·) − ϕ) on Rn
+, we have

min
{

U∗(T, β0, s0) − h(β0, s0),H0(Dϕ(s0))
}
≤ 0, (5.5)

where h = g if g is continuous and h = ĝ0 otherwise.

Proof 1. Let z0 ∈ (0,∞) × Rn
+ and ψ be an R-valued smooth test function on Rn+1

+ ,
and suppose that

0 = (U∗(T, ·) − ψ)(z0) = max
Rn+1

+

(U∗(T, ·) − ψ).

We first show

min
{

U∗(T, z0) − h(z0),H0(Dψ(z0))
}
≤ 0.

For this purpose, we assume U∗(T, z0) > h(z0) and seek to show H0(Dψ(z0)) ≤ 0.
Since h(z0) − ψ(z0) < U∗(T, z0) − ψ(z0) = 0, we have

h(z) − ψ(z) ≤ 2−1(h(z0) − ψ(z0)) < 0, z ∈ A2ρ,

for sufficiently small ρ > 0, where Aρ is as in Lemma 5.3.
For any m > T−1/2, we define Jm := (T − m−2, T ) and

ψm(t, z) := ξ(z) + m(T − t) = ψ(z) + |z − z0|2 + m(T − t), (t, z) ∈ Jm × A2ρ.

Let {(tm, zm)}m be a maximizing sequence of (U∗ − ψm) on Jm × ∂0A2ρ, where ∂0A :=
cl(∂A ∩ (0,∞)n+1). Then, after passing to a subsequence, zm → z∗ as m → ∞ for some
z∗ ∈ ∂0A2ρ, and thus

lim sup
m→∞

sup
Jm×∂0A2ρ

(U∗ − ψm) ≤ lim sup
m→∞

(U∗(tm, zm) − ψ(zm)) − 4ρ2

≤ U∗(T, z∗) − ψ(z∗) − 4ρ2 ≤ −4ρ2.

Since U(T, z) ≤ h(z), we have

sup
∂p(Jm×A2ρ)

(U − ψm) ≤ max
{

sup
A2ρ

(U(T, ·) − ψ), sup
Jm×∂0A2ρ

(U∗ − ψm)
}
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≤ 2−1 max
{
h(z0) − ψ(z0),−ρ2

}
< 0 = U∗(T, z0) − ψ(z0)

≤ sup
J0

m×Aρ

(U∗ − ψm)

for sufficiently large m. Hence if follows form Lemma 5.3 that

(Jm × A2ρ) ∩M0(ψm)c 6= ∅ for sufficiently large m.

Let {(t∗m, z∗
m)}m ⊂ (Jm × A2ρ) ∩M0(ψm)c and z∗ := limm→∞ z∗m ∈ A2ρ. Since

− sup
π1∈K1

GDψm(t∗m,z∗m),π1

ψm(t∗m, z∗m) = m − sup
π1∈K1

GDξ(z∗m),π1

ξ(t∗m, z∗m) → ∞ as m → ∞,

then, we obtain

0 ≥ lim
m→∞

H0(Dψm(t∗m, z∗m)) = lim
m→∞

H0(Dξ(z∗m)) = H0(Dψ(z∗) + 2|z∗ − z0|)

→ H0(Dψ(z0)) as ρ ↓ 0.

2. The similar arguments to Step 1 of Lemma 5.5 yields (5.5). ¤

Lemma 5.7 Assume that γ0 in (3.9) is an element of int(K0 ∩ Rn
+) and the conditions

(3.10)-(3.11) hold. Then U∗(T, ·) ≤ ĝ0 on (0,∞) × Rn
+.

Proof Fix arbitrary β > 0. Let h be as in Lemma 5.6. Define

u(s) := eU∗(T,β,s), v(s) := ebg0(β,s), h̃(s) := eh(β,s), s ∈ Rn
+.

To prove u ≤ v, we assume to the contrary that 2ζ := u(s0)−v(s0) > 0 for some s0 ∈ Rn
+,

and let us work towards a contradiction.
Let us introduce γ := γ0 + ρ1n ∈ int(K0 ∩ Rn

+) for sufficiently small ρ > 0, and
η(s) := exp(γ>s). For any m > 0 we define

ϕm(s, s′) := u(s) − v(s′) − m

2
|s − s′|2 − εη(s), Mm := sup

Rn
+×Rn

+

ϕm(s, s′),

where ε > 0 is a small constant satisfying

Mm ≥ u(s0) − v(s0) − εη(s0) = ζ > 0.

From (3.12), we have u(s) ≤ C ′η(s) exp(−ρs>1n) for some constant C ′ > 0. Hence
Mm = ϕm(sm, s′m) for certain sm, s′m ∈ Rn

+, and

ζ +
m

2
|sm − s′m|2 + εη(sm) ≤ u(sm) − v(s′m), (5.6)

which provides that {sm}m and {s′m}m are located in a compact subset of Rn
+. Therefore,

after passing to a subsequence, sm → s∗ ∈ Rn
+. Further Lemma 3.1 in Crandall et al.[5]
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gives

m|sm − s′m|2 → 0 and Mm → u(s∗) − v(s∗) − εη(s∗) as m → ∞.

Let p′m := m(sm − s′m) and pm := p′m + εγη(sm). Then it follows from (5.5) that

min

{
u(sm) − h̃(sm), u(sm)H0

(
pm

u(sm)

)}
≤ 0. (5.7)

Since H0(Dĝ0(β, s)) ≥ 0, s ∈ (0,∞)n, in the viscosity sense, we also have

Ĥ0

(
p′m

v(s′m)
: s′m

)
≥ 0,

where

Ĥ0(p : s) := inf
{

δ0(q) − q>p : |q| = 1 and min
1≤j≤n

qj1l{sj=0} ≥ 0
}

.

With the compactness of ∂B1(0), we note

u(sm)H0

(
pm

u(sm)

)
= u(sm)δ0(qm) − q>mpm

for some qm ∈ ∂B1(0). Define q′m := (q′m1, . . . , q
′
mn) ∈ ∂B1(0) with q′mj := qmj1l{s′mj>0} +

|qmj|1l{s′mj=0}. Taking account of (3.1), (3.11) and (5.6), we obtain

u(sm)H0

(
pm

u(sm)

)
− v(s′m)Ĥ0

(
p′m

v(s′m)
: s′m

)
≥ {u(sm) − v(s′m)}δ0(qm) − q>m(pm − p′m) + {δ0(qm) − δ0(q

′
m)}v(s′m) + (q′m − qm)>p′m

≥ εη(sm){δ0(qm) − q>mγ} + {δ0(qm) − δ0(q
′
m)}v(s′m) + 2m

n∑
j=1

q−mjsmj1l{s′mj=0}

≥ εη(sm)H0(γ)

> 0.

Since v ≥ h̃, we derive the contradiction from (5.6)-(5.7):

0 ≥ lim sup
m→∞

{
u(sm) − h̃(sm)

}
≥ lim sup

m→∞

{
u(sm) − v(s′m) + h̃(s′m) − h̃(sm)

}
≥ ζ + lim sup

m→∞

{
h̃(s′m) − h̃(sm)

}
= ζ.

¤

By Lemma 5.5&5.7, we have ĝ0 = (̂g∗)0 ≤ U∗(T, ·) ≤ U∗(T, ·) ≤ ĝ0 under the conditions
(3.2), (3.9)-(3.11), and γ0 ∈ int(K0 ∩ Rn

+), as asserted. ¤
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Appendix

A Arbitrage opportunities

Here we consider an absence of arbitrage opportunity. In this appendix, we shall say:

( i ) For each k ∈ {0, 1}, πk ∈ Π k is an arbitrage opportunity for the large investor Ik

if P{Mπk,π(T ) ≥ 0} = 1, P{Mπk,π(T ) > 0} > 0 for all π1−k ∈ Π 1−k.

(ii) {pπ, π ∈ Π } ⊂ P is an arbitrage opportunity for a small investor

if P{Mpπ ,π(T ) ≥ 0} = 1, P{Mpπ ,π(T ) > 0} > 0 for all π ∈ Π .

Here Mp,π(t) :=

∫ t

0

p(u)>dSπ(u), 0 ≤ t ≤ T, p ∈ P, π = (π0, π1) ∈ Π .

For π = (π0, π1) ∈ Π , we shall denote by A0(π) (resp. A1(π)) the set of all processes
p ∈ P such that

P
{

Mp,π(t) ≥ −ap,π, ∀t ∈ [0, T ]
}

= 1 for some constant ap,π > 0(
resp. E

[∫ T

0

|p(t)|2qdt

]
< ∞ for some constant q > 1

)
.

We also define the sets F π(p), Gπ ∈ B[0, T ] ⊗FT as

F π(p) :=

{
(t, ω) ∈ [0, T ] × Ω

∣∣∣∣ • σπ(t, ω)diag[Sπ(t, ω)]p(t, ω) = 0.
• p(t, ω)>diag[Sπ(t, ω)](bπ(t, ω) − rπ(t, ω)1n) > 0.

}
,

Gπ :=
{

(t, ω) ∈ [0, T ] × Ω
∣∣∣ bπ(t, ω) − rπ(t, ω)1n /∈ Range[σπ(t, ω)>]

}
,

for p ∈ P and π ∈ Π . Then we have

Proposition A.1 ( i ) Suppose that (2.5) holds. Let k ∈ {0, 1} and πk ∈ Π k. If πk ∈
A0(π) ∪ A1(π) for some π1−k ∈ Π 1−k, then πk is not an arbitrage opportunity for
the large investor Ik.

(ii) Suppose that (2.5) holds. Let {pπ, π ∈ Π } ⊂ P. If pπ ∈ A0(π) ∪ A1(π) for some
π ∈ Π , then {pπ, π ∈ Π } is not an arbitrage opportunity for a small investor.

(iii) Fix k ∈ {0, 1}. Assume that for all π1−k ∈ Π 1−k there exists πk ∈ Π k such that (Leb.⊗
P){F π(πk)} > 0 and πk

∗ := πk1lF π(πk) ∈ Π k. Then πk
∗ is an arbitrage opportunity for

the large investor Ik.

(iv) If (Leb.⊗P){Gπ} > 0 for all π ∈ Π , then there is an arbitrage opportunity for a small
investor in market.
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Proof We adapt the arguments in Karatzas [15, §0.2] to our market model.
1. Let π ∈ Π and p ∈ A0(π) ∪ A1(π). In case p ∈ A1(π), we know from (2.8) that
{Zθπ(t)Mp,π(t), 0 ≤ t ≤ T} is a P-martingale. In case p ∈ A0(π), we observe

0 ≤ Zθπ(t){Mp,π(t) + ap,π}

=

∫ t

0

Zθπ(u) [σπ(u)diag[Sπ(u)]p(u) + {Mp,π(u) + ap,π}θπ(u)]> dW (u),

which means that the process {Zθπ(t)Mp,π(t), 0 ≤ t ≤ T} is a P-supermartingale. Hence
we obtain E[Zθπ(T )Mp,π(T )] ≤ 0, and thus the condition P{Mp,π(T ) ≥ 0} = 1 implies
Mp,π(T ) = 0 a.s. Therefore we have the assertions ( i ) and (ii).
2. Suppose that the assumption in (iii) is satisfied. Then we know that πk

∗ is an arbitrage
opportunity for the large investor Ik by virtue of

Mπk
∗ ,π(T, ω) =

∫ T

0

|πk(t, ω)>diag[Sπ(t, ω)](bπ(t, ω) − rπ(t, ω)1n)|1lF π(πk)(t, ω)dt.

3. In case (Leb.⊗P){Gπ} > 0 for all π ∈ Π , we easily see that for each π ∈ Π there exists
a pπ ∈ P such that (Leb.⊗P){F π(pπ) ∪ F π(−pπ)} > 0. For each π ∈ Π , let us define

p̂ π := sgn{(pπ)>diag[Sπ](bπ − rπ1n)}pπ1lF π(pπ)∪F π(−pπ) .

Clearly, {p̂ π, π ∈ Π } is then an arbitrage opportunity for a small investor. ¤

B Case of depending on proportions of wealth

Let Qk (k = 0, 1) be subsets of P such that 0 ∈ Qk, and we denote q = (q0, q1) ∈ Q :=
Q0 ×Q1. Here qk(t) = (qk

1(t), . . . , q
k
n(t)) represents the proportions of Ik’s wealth invested

in the corresponding stocks at time t ∈ [0, T ], for each k ∈ {0, 1}.
In this subsection we assume that the coefficients rπ, bπ and σπ of market depend on

merely the pair q = (q0, q1) of the portfolio-proportion processes. Then the discounted
wealth process Xxk,q

k (·) of the investor Ik evolves according to the equation

dXk(t)

Xk(t)
= qk(t)>

{
(bq(t) − rq(t)1n)dt + σq(t)>dW (t)

}
, 0 ≤ t ≤ T

with an initial capital Xk(0) = xk ∈ R, k = 0, 1.
We also assume that the contingent claim {BC, T } = {BqCq, T q} only depends on

the pair q = (q0, q1). Then, by analogy with Theorem 2.1, we have

Theorem B.1 The minimal hedging costs are expressed as

hup = sup
q1∈Q1

inf
q0∈Q0

sup
τ∈T q

sup
ν∈D

Eν

[
Cq(τ)

X1,q
0 (τ)

]
,

hlow = lim
m→∞

inf
q0∈Q0

sup
q1∈Q1

sup
τ∈T q

inf
ν∈D

Eν

[
Cq(τ)

X1,q
1 (τ)

∧ m

]
,
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respectively. Moreover, if E[(Cq(τ)
/
X1,q

1 (τ))p] < ∞ for any q ∈ Q, τ ∈ T q and some
constant p = p(q, τ) > 1, then

hlow = inf
q0∈Q0

sup
q1∈Q1

sup
τ∈T q

inf
ν∈D

Eν

[
Cq(τ)

X1,q
1 (τ)

]
Proof The proof is similar to that of Theorem 2.1. Thus we omit it here. ¤

Remark B.2 Let us consider the model:

• bq and σq are independent of the pair q = (q0, q1) of portfolio-proportion processes,

• rq(t) = r(t) + ρ(t)1l{q0(t)>1n>1}, 0 ≤ t ≤ T , for certain bounded, positive,
F-progressively measurable processes r, ρ which are independent of q.

Since Xx0,q
0 (·) ≥ 0 a.e. for q ∈ Q and x0 ≥ 0, this model describes the market where the

interest rate for borrowing is higher than the interest rate for investing. This model was
studied by Cvitanić & Karatzas[7] and Cvitanić & Ma[9].
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